
Retro Presentation
Team Origin

Shakeel Khan, Jeongwook Oh, Jino Chai, Gary Yuen



Process

● Start the week off identifying what 
tasks need to be done.

● Divy up the tasks.
● Communicate via Discord to post 

updates/ask for help.
● Submit a PR on GitHub when 

something is ready.
○ Integration.

● Pray.



Tools

Development:
● Unity w/ Visual Studio
● Git
● GitHub

○ Issues
○ Integration (branches and PRs)

Communication/Organization:
● Discord
● Google Docs

Misc. Resources:
● Google
● YouTube

○ Brackeys.
○ Lost Relic Games.



Responsibilities

Shakeel:
● Players (the architecture, also did most 

of the Lancer).
● Inventory.
● Item selection (both back and frontend).
● Initial main menu & some other UI stuff.
● Facilitated the merging of branches on 

Git.

Jeongwook:
● Arts (everything).
● HUD & character selection screens.

Jino:
● Did some of the enemies.
● Worked on the level manager.
● Music & sound effects.
● Currently working on the boss!

Gary:
● Did most of the enemy behaviors.
● Vanguard and Trailblazer Abilities.
● Player Movement adjustment.



Likes

- Special abilities in a bullet hell are not new, but they are cool to use.
- “Inventory system is the greatest thing that I have ever laid my eyes on, and I cannot hope to 

see anything else when blinded by its glorious radiance.” - Gary Yuen c. just now
- The overall polish of the UI and arts is very nice.
- The music is great, unless you’ve listened to it 2,361 times.



Dislikes

● Unity (it’s a love-hate relationship).
● Git (powerful, though difficult).

○ Nasty merge conflicts when the same scene has been modified.
● The amount of effort put into the project is not reflected in the gameplay.

○ Inventory system.
○ Getting the characters going.
○ Making the HUD as beautiful as it is.



Next Time

Next time? There’s a next time?

As for our game...
● Bullet Hells are incredibly resource intensive.

Game design is hard…
● Need to flush out the details of the game earlier in the process.

○ Better documentation overall.
○ This puts everyone on the same page.

● Documenting code is important!
○ Helps your team members understand your code if they need to work with it.

● Integrate earlier to iron out kinks (as opposed to building it for the first time 1 min 
before class).

● Better distribution of responsibilities.


